
Contents

1 What's new

2 Overview

3 Requirements

4 Components

5 Instructions

6 Scripting interface

7 FAQ

8 Contact

Rope Minikit
version 2.1.0

The Rope Minikit brings stable rope physics to your project. The rope
component can be used to simulate simple wires or more advanced
setups with pulleys and weights that require active collision detection.
The bundled example scene shows how to connect the rope for a
physically simulated crane, a rope bridge and set of swings. The rope
component is written with performance in mind and many compute
intensive tasks are handled by Unity jobs on separate threads
accelerated using the Burst compiler.

About the Minikits

Minikits are small, tweakable and extendable packages with full source code that illustrate how
to implement interesting behaviours for your project. They're designed to be easy-to-use and
self-explanatory.

1 What's new

v2.1.0

Add interpolation property that may be used to smooth the motion of the rope
This is especially useful when a low fixed update rate is used
The behavior mimics the RigidbodyInterpolation setting and has the following
values

None
Interpolate
Extrapolate

Improve performance when generating rope geometry (by taking advantage of newer
Unity APIs)

v2.0.0

https://unity.com/dots
https://docs.unity3d.com/ScriptReference/RigidbodyInterpolation.html

Replace the RopePin and RopeRigidbodyConnection components with a single
RopeConnection component and add 2 new connection types

There are now 4 connection types:
Pin Rope To Transform
Pin Transform To Rope
Pull Rigidbody To Rope
Two Way Coupling Between Rigidbody And Rope

Warning: This change breaks backwards compatibility!
Add gravity property for setting the gravity vector on a per-rope basis
Fix bug where wrong impulse function was used for rigidbody feedback

Warning: This might require re-tweaking of the stiffness/damping values of your
existing rope setups

Fix bug where rigidbody rotational constraints would not be handled properly when
connected to a rope
Reskin example scene
Switch to 3 digit semantic versioning

v1.11

More accurate rope length calculation on SplitAt()
Fix bug where multiple ropes with custom meshes would allocate unnecessary memory

v1.1

Add support for dynamically splitting the rope using the new SplitAt() method
Try it out in the example scene by grabbing a rope with the mouse pointer and
pressing space before letting go!

Add support for custom meshes that can be rendered instead of the default rope cylinder
To illustrate this, the crane in the example scene now has a chain with links instead
of a smooth rope

Change RopePin and RopeRigidbodyConnection components to be lazily initialized
Rename RopeMeasurements struct to Measurements and make it a sub-type of Rope
Fix bug where toggling the simulation.enabled flag could result in an IndexOutOfBounds
exception

v1.03

Fix bug where one end of the rope could be moved if it collided with something even
though it was pinned down using a RopePin component

Fix bug where one end of the rope would show more sag than the other end when the
rope was being stretched
Add Rope.GetCurrentLength() method
The example scene rope material now uses an explicit texture as the built-in one
previously used caused iOS builds to fail

v1.02

Add soft backdrop to example scene

v1.01

Fix rope enable/disable logic
Add ResetToSpawnCurve() method

v1.0

Initial release

2 Overview

Features

Stable rope physics
Many tweakable user parameters
Ability to dynamically split ropes using the SplitAt() method
4 different rope connection types allow interaction with the rest of the scene

Pin Rope To Transform
Pin Transform To Rope
Pull Rigidbody To Rope
Two Way Coupling Between Rigidbody And Rope

Scene view handles for adjusting rope spawn curve
High performance is achieved using Unity jobs and the Burst compiler

Typical performance for the example scene with collisions enabled:
~0.2 ms spent in job threads
~0.7 ms spent on the main thread

Typical performance for the example scene with collisions disabled:
~0.15 ms spent in job threads
~0.35 ms spent on the main thread

Full source code
Example scene contains:

Physically simulated crane
Rope bridge
Swings
Mouse interaction script

Current Limitations

Collision support for convex Mesh, Box, Sphere and Capsule colliders only
It is difficult to get perfectly stiff ropes unless very small physics time steps are used
Rope bridge currently only takes the resting mass of colliding rigidbodies into account,
there is no impact effect
Scripting knowledge required for creating stable rope suspended platforms other than
rope bridges

3 Requirements

Burst 1.1.2 or above

4 Components

Rope

This is the main component that simulates and renders the rope

RopeConnection

This component connects the rope it is attached to to a transform or rigidbody component in the
scene. The resulting behaviour depends on what type of connection is used:

Pin Rope To Transform

Pins a point on the rope to a point on a transform. The transform can move freely and the
rope will always follow along.

Pin Transform To Rope

Pins a point on a transform to a point on the rope. The rope will move freely and the
transform will always follow along. This connection takes control of the transform.

Pull Rigidbody To Rope

Pulls a point on a rigidbody towards a point on the rope by applying velocity changes to
the rigidbody. This connection does not take control of the rigidbody, other forces and
constraints are respected.

Two Way Coupling Between Rigidbody And Rope

Introduces a two-way coupling between the rope and a rigidbody. The rope will react to
the rigidbody and feedback impulses back to the rigidbody allowing for complicated
setups such as the crane in the example scene. Care must be taken so that the rope mass
per meter value is comparable to the masses of connected rigidbodies, otherwise the
simulation may blow up. This connection does not take control of the rigidbody, other
forces and constraints are respected.

5 Instructions

Workflow

1. Create an empty game object
2. Attach the Rope script to it
3. Add a few spawn points either using the scene view buttons (Push spawn point, Pop
spawn point) or by manually changing the Spawn Points property in the inspector

4. Move around the spawn points using the scene view handles
Hold down left Shift to switch to the ordinary transform tool for more fine-grained
control

5. Assign a material to the Material property of the rope
Optionally adjust the Tiling of the material
1 scene unit is mapped to 1 texture tile (x-axis) lengt-wise
1 texture tile (y-axis) wraps around the rope curlwise

6. Optionally attach any number of RopeConnection components to the rope
Set the Body or Transform reference to the object the rope should be connected to
Set the Local Connection Point to be the point in object local space to which the
rope should be attached

General tips

Examine the example scene to get an understanding for how to connect the rope in a
typical scene
Change the tweakable parameters when in play-mode to get a feel for what they do

There are tooltips for all tweakable parameters

Look at the helper scripts to get an understanding for how one can interact with the rope
using custom scripts

Performance tips

Avoid enabling collisions unless absolutely necessary
Disable simulation of ropes that are far away or out of view using a custom script (they
will still be rendered)
Only call rope methods in a custom script from FixedUpdate() or LateUpdate()

Collisions

Collision detection is very performance intensive, as all physics queries have to be performed
on the main thread. Aim to keep the Stride value as high as possible to reduce the amount of
queries. Another approach is to disable simulation of ropes that require collisions more
aggressively and keep the number of active ropes with collisions enabed to a bare minimum,
even though the total number in the scene is high.

Stiffness

Rope stiffness depends on many factors: the Stiffness value of the rope, the Resolution of the
rope, the Solver Iterations of the rope and finally the Fixed Timestep value in Project
Settings → Time. To achieve a stiff rope, choose a high stiffness value, a low resolution value,
many solver iterations and a low fixed time step.

6 Scripting interface

The rope is simuated using a set of inter-connected particles (visuaized by spheres when
selecting a rope in edit-mode). Since the physics simulation is inherently stable, one can move
around these particles in almost any way imaginable. This enables many custom setups such as
the rope bridge in the example scene (see RopeBridgePlank.cs).

Interface

To fascilitate custom setups, the rope exposes a small scripting interface. The table below shows
the properties and methods available. For more information on a particular property or method,
see the description in the source file.

measurements

Returns the measurements of the rope. The measurements remain constant after the rope
is first initialized.

currentBounds

The current world-space bounds of the visual mesh

PushSpawnPoint()

Adds a new spawn point to the rope. May be called from edit-mode.

PopSpawnPoint()

Removes the last spawn point of the rope. May be called from edit-mode.

GetParticleIndexAt(distance)

Returns the index of the simulation particle at a particular distance along the curve of the
rope

GetScalarDistanceAt(particleIndex)

Returns the scalar distance along the curve of the rope that a particular simulation particle
is located at. The scalar distance is a value between 0 and 1. The lengthMultiplier is not
taken into account. To get the distance along the rope in world space, multiply the scalar
distance by the realCurveLength measurement.

GetPositionAt(particleIndex)

Returns the current position of a particular simulation particle

SetPositionAt(particleIndex, position)

Sets the position of a particular simulation particle

GetVelocityAt(particleIndex)

Returns the current velocity of a particular simulation particle

SetVelocityAt(particleIndex, velocity)

Sets the velocity of a particular simulation particle

GetMassMultiplierAt(particleIndex)

Returns the mass multiplier of a particular simulation particle. This value can be used to
increase or decrease the weight of a section of the rope. A value of 0 will make the particle
immovable. A value of 2 will make the particle twice as heavy as its neighbors. The
default value is 1.

SetMassMultiplierAt(particleIndex, value)

Sets the mass multiplier of a particular simulation particle. This value can be used to
increase or decrease the weight of a section of the rope. A value of 0 will make the particle
immovable. A value of 2 will make the particle twice as heavy as its neighbors. The
default value is 1.

GetClosestParticle(point, out particleIndex, out distance)

Finds the simulation particle closest to a particular point

GetClosestParticle(ray, out particleIndex, out distance, out distanceAlongRay)

Finds the simulation particle closest to a particular ray

RegisterRigidbodyConnection(particleIndex, rigidbody, rigidbodyDamping,
pointOnBody, stiffness)

Registers a rigidbody connection for the next simulation frame. A rigidbody connection is
a two-way coupling of a simulation particle to a traditional rigidbody. Make sure to call
this method from FixedUpdate(). Any simulation particle involved in a rigidbody
connection will get its mass multiplier reset to 1 at the end of the simulation frame.

ResetToSpawnCurve()

Resets the rope to its original shape relative to the current transform. Useful when
activating a pooled game object that is deactivated and re-activated instead of destroyed
and instantiated.

GetCurrentLength()

Computes the current length of the rope. In contrast to the
measurements.realCurveLength field, this value includes the stretching of the rope due to
stress.

SplitAt(particleIndex, outNewRopes)

Splits the rope at a specific simulation particle and returns the rope components of the
newly instantiated game objects. Make sure that the supplied array has exactly 2 slots. A
Unity message 'OnRopeSplit(Rope.OnSplitParams)' will be sent to each newly created
rope.

Execution order

Make sure the custom script runs before the custom execution order of Rope.cs, which defaults
to 100. Calling rope methods from Update() or after the rope's FixedUpdate() will halt the main
thread as it waits for the rope simulation jobs to complete. This destroys parallelism and
performance.

Example usage

using RopeMinikit;

public class RopeMover : MonoBehaviour

{

 public Rope rope;

 public void FixedUpdate()

 {

 if (rope == null)

 {

 return;

 }

 rope.SetMassMultiplierAt(0, 0.0f); // makes the particle immovable for the rope

 rope.SetPositionAt(0, transform.position);

 }

}

7 FAQ

Q: Why does a rigidbody with a freeze rotation constraint act
strange when it is connected to a rope?

A: This is caused by
a bug in Unity.

8 Contact

Please let me know if you run into any problems when using the minikit or if you have
feedback on how I can improve it in the future. I am also interested in seeing projects that use
any of my toolkits or minikits in practice!

Website: https://gustavolsson.com/

Contact: https://gustavolsson.com/contact/

Copyright 2022 Gustav Olsson

formatted by Markdeep 1.14
✒

https://docs.unity3d.com/ScriptReference/Rigidbody-constraints.html
https://fogbugz.unity3d.com/default.asp?1342781_6lnk429ujeergaf6
https://gustavolsson.com/
https://gustavolsson.com/contact/
https://casual-effects.com/markdeep

